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Abstract
Inspired by the squared eigenfunction symmetry constraint, we introduce a new
τk-flow by ‘extending’ a specific tn-flow of a discrete KP hierarchy (DKPH). We
construct an extended discrete KPH (exDKPH), which consists of tn-flow, τk-
flow and tn evolution of eigenfunction and adjoint eigenfunctions, and its Lax
representation. The exDKPH contains two types of discrete KP equation with
self-consistent sources (DKPESCS). Two reductions of exDKPH are obtained.
The generalized dressing approach for solving the exDKPH is proposed and
the N-soliton solutions of two types of the DKPESCS are presented.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

Generalizations of a soliton hierarchy attract a lot of interests from both physical and
mathematical points and there were some methods to generalize the soliton hierarchy
[1–4]. Recently, a systematic approach inspired by a squared eigenfunction symmetry
constraint was proposed to construct the extended KP hierarchy [5]. By this method, the
extended two-dimensional Toda lattice hierarchy, the extended CKP hierarchy and the extended
q-deformed KP hierarchy have been obtained [6–8].

The discrete KP hierarchy(DKPH) [9–12] is an interesting object in the research of
the discrete integrable systems and the discretization of the integrable systems [13]. Sato’s
approach for the discrete KPH was presented in [11]. Naturally, there are some similar
properties between discrete KPH and KPH [14], such as tau function [12, 14], Hamiltonian
structure [12] and gauge transformation [10, 15, 16], etc. In [10], Oevel has explicitly given
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two types of gauge transformation operators of the discrete KPH. In [16], the combined gauge
operator and the determinant representation of the operator have been obtained.

In this paper, we will construct the extension of the discrete KPH (exDKPH). Inspired
by the squared eigenfunction symmetry constraint of the discrete KP hierarchy [10], we
introduced a new τk-flow by ‘extending’ a specific tn-flow of the discrete KP hierarchy. Then
we find the exDKPH consisting of the tn-flow of the discrete KP hierarchy, τk-flow and the
tn-evolutions of eigenfunctions and adjoint eigenfunctions. The commutativity of tn-flow and
τk-flow gives rise to zero curvature representation for exDKPH. Also the Lax representation of
exDKPH is derived. Due to the introduction of τk-flow the exDKPH contains two time series
{tn} and {τk} and more components by adding eigenfunctions and adjoint eigenfunctions. The
exDKPH contains the first and second types of the discrete KP equation with self-consistent
sources (DKPESCS). The KP equation with self-consistent sources arose in some physical
models describing the interaction of long and short waves [4]. The similarity between the
KP equation and the discrete KP equation enables us to speculate on the potential application
of the discrete KP equation with self-consistent sources. By tn-reduction and τk-reduction,
the exDKPH reduces to a discrete (1+1)-dimensional integrable hierarchy with self-consistent
sources and a constrained discrete KP hierarchy, respectively.

The dressing method is an important tool for solving the soliton hierarchy [12]. However,
this method cannot be applied directly for solving the ‘extended’ hierarchy. A generalized
dressing approach for exKPH is proposed in [17]. In this paper, with the combination of
the dressing method and variations in the constants method, a generalization to the dressing
method for exDKPH is presented, which is based on the dressing method for discrete KPH
[11] and a similar approach for finding Wronskian solutions to the constrained KP hierarchy
[18]. In this way, we can solve the entire hierarchy of exDKPH in an unified and simple
manner. As the special cases, the N-soliton solutions of both types of DKPESCS are obtained
simultaneously.

This paper will be organized as follows. In section 2, we present the exDKPH and its Lax
pair, which includes the two types of DKPESCS. In section 3, tn-reduction and τk-reduction
for the exDKPH are given. In section 4, we discuss the generalized dressing method for the
exDKPH. In section 5, we present the N-soliton solutions of the DKPESCS.

2. New extended discrete KP hierarchy

We denote the shift and the difference operators acting on the associative ring F of functions
by � and �, respectively, as follows:

F = {f (l) = f (l, t1, t2, . . . , ti , . . .); l ∈ Z, ti ∈ R}
�(f (l)) = f (l + 1) = f (1)(l), �(f (l)) = f (l + 1) − f (l).

In this paper, we use P(f ) to denote an action of the difference operator P on the function f ,
while Pf means the multiplication of the difference operator P and the zero-order difference
operator f . Define the following operation

�jf =
∞∑
i=0

(
j

i

)
(�i(f (l + j − i)))�j−i ,

(
j

i

)
= j (j − 1) · · · (j − i + 1)

i!
.

(1)

Also, we define the adjoint operator to the � operator by �∗:

�∗(f (l)) = (�−1 − I )(f (l)) = f (l − 1) − f (l), (2)
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�∗j f =
∞∑
i=0

(
j

i

)
(�∗i (f (l + i − j)))�∗j−i . (3)

Let P = ∑k
j=−∞ fj (l)�

j , the adjoint operator P ∗ is defined by P ∗ = ∑k
j=−∞ �∗j fj (l).

The Lax equation of the DKP hierarchy is given by [9, 11]

Ltn = [Bn,L], (4)

where L = � + f0 + f1�
−1 + f2�

−2 + · · · is a pseudo-difference operator with potential
functions fi ∈ F,Bn = Ln

+ stands for the difference part of Ln. The commutativity of tn- and
tm-flow gives rise to the zero-curvature equations for the DKP hierarchy:

Bn,tm − Bm,tn + [Bn,Bm] = 0 (5)

with the Lax pair given by

ψtn = Bn(ψ), ψtm = Bm(ψ). (6)

The tn evolutions of eigenfunction ψ and adjoint eigenfunction φ read

ψtn = Bn(ψ), φtn = −B∗
n(φ). (7)

For n = 2,m = 1, (5) gives rise to the DKP equation [9]

�(f0t2 + 2f0t1 − 2f0f0t1) = (� + 2)f0t1t1 . (8)

It is known that the squared eigenfunction symmetry constraint given by [10]

B̃k = Bk +
N∑

i=1

ψi�
−1φi

ψi,tn = Bn(ψi), φi,tn = −B∗
n(φi), i = 1, . . . , N,

is compatible with the DKP hierarchy. Here N is an arbitrary natural number, ψi and φi are
N different eigenfunctions and adjoint eigenfunctions of equations (9c). This compatibility
enables us to construct a new extended discrete KP hierarchy (exDKPH) as

Ltn = [Bn,L], (9a)

Lτk
=

[
Bk +

N∑
i=1

ψi�
−1φi, L

]
, (9b)

ψi,tn = Bn(ψi), φi,tn = −B∗
n(φi), i = 1, . . . , N. (9c)

We have the following lemma.

Lemma 1. Let Q = a�k, k � 1, then

(�−1φQ)− = �−1Q∗(φ) (10a)

[Bn,ψ�−1φ]− = Bn(ψ)�−1φ − ψ�−1B∗
n(φ). (10b)

Proof. Using f � = ��−1(f ) − �(�−1(f )),�∗ = −��−1 , we have

(�−1φa�k)− = (�−1��−1(φa)�k−1 − �−1�(�−1(φa))�k−1)−
= −(�−1�(�−1(φa))�k−1)− = · · ·
= (−1)k�−1�k(�−k(φa)) = �−1�∗k(φa) = �−1Q∗(φ)

which yields to (10a) and (10b). �
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Proposition 1. The commutativity of (9a) and (9b) under (9c) gives rise to the following
zero-curvature representation for exDKPH (9)

Bn,τk
−

(
Bk +

N∑
i=1

ψi�
−1φi

)
tn

+

[
Bn,Bk +

N∑
i=1

ψi�
−1φi

]
= 0, (11a)

ψi,tn = Bn(ψi), φi,tn = −B∗
n(φi), i = 1, 2, . . . , N, (11b)

with the Lax representation given by

�tn = Bn(�), �τk
=

(
Bk +

N∑
i=1

ψi�
−1φi

)
(�). (12)

Proof. For convenience, we omit
∑

. By (9) and Lemma 1, we have

Bn,τk
= (

Ln
τk

)
+ = [Bk + ψ�−1φ,Ln]+ = [

Bk + ψ�−1φ,Ln
+

]
+ +

[
Bk + ψ�−1φ,Ln

−
]

+

= [
Bk + ψ�−1φ,Ln

+

] − [
Bk + ψ�−1φ,Ln

+

]
− +

[
Bk,L

n
−
]

+ = [
Bk + ψ�−1φ,Ln

+

]
− [ψ�−1φ,Bn]− + [Bn,L

k]+ = [Bk + ψ�−1φ,Bn] + (Bk + ψ�−1φ)tn . �

Remark. The exDKPH (11) extends the DKPH (5) by containing two time series {tn} and
{τk} and more components ψi and φi, i = 1, . . . , N.

Example 1. The first type of DKPSCS is given by (11) with n = 1, k = 2 [19]

�
(
f0τ2 + 2f0t1 − 2f0f0t1

) = (� + 2)f0t1t1 − �2
N∑

i=1

(
ψiφ

(−1)
i

)
, (13a)

ψi,t1 = �(ψi) + f0ψi, φi,t1 = −�∗(φi) − f0φi, i = 1, 2, . . . , N. (13b)

Its Lax representation is

�t1 = (� + f0)(�), (14a)

�τ2 =
(

�2 +
(
f0 + f

(1)
0

)
� + �(f0) + f

(1)
1 + f1 + f 2

0 +
N∑

i=1

ψi�
−1φi

)
(�). (14b)

Example 2. The second type of DKPSCS is given by (11) with n = 2, k = 1

�
(
f0t2 + 2f0τ1 − 2f0f0τ1

) = (� + 2)f0τ1τ1 +
N∑

i=1

[
�2

((
f0 + f −1

0 − 2
)
ψiφ

−1
i

)
+ �

(
ψ

(2)
i φi − ψiφ

(−2)
i

)
+ �

(
(� + 1)

(
ψiφ

(−1)
i

)
τ1

)]
, (15a)

ψi,t2 = �2(ψi) +
(
f0 + f

(1)
0

)
�(ψi) +

(
�(f0) + f

(1)
1 + f1 + f 2

0

)
ψi, (15b)

φi,t2 = −�∗2(ψi) − �∗((f0 + f
(1)
0

)
ψi

) − (
�(f0) + f

(1)
1 + f1 + f 2

0

)
ψi. (15c)

Its Lax representation is

�t2 = (
�2 +

(
f0 + f

(1)
0

)
� + �(f0) + f

(1)
1 + f1 + f 2

0

)
(�) (16a)

�τ1 =
(

� + f0 +
N∑

i=1

ψi�
−1φi

)
(�). (16b)

4
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3. Reductions of the exDKPH

3.1. The tn-reduction

The tn-reduction is given by

Ln = Bn or Ln
− = 0. (17)

Then we have

(Ln)tn = [Bn,L
n] = 0, Bn,tn = 0.

So L is independent of tn and we have

Bn(ψi) = Ln(ψi) = λn
i ψi, B∗

n(φi) = λn
i φi. (18)

Then we can drop tn dependence from (11) and obtain

Bn,τk
=

[
(Bn)

k
n
+ +

N∑
i=1

ψi�
−1φi, Bn

]
, (19a)

Bn(ψi) = λn
i ψi, B∗

n(φi) = λn
i φi, i = 1, 2, . . . , N, (19b)

with the Lax pair given by

�τk
=

(
(Bn)

k
n
+ +

N∑
i=1

ψi�
−1φi

)
(�), Bn(�) = λn�.

Equation (19) can be regarded as discrete (1+1)-dimensional integrable hierarchy with self-
consistent sources. When n = 2, k = 1, (19) gives rise to

2�
(
f0τ1 − f0f0τ1

) = (� + 2)f0τ1τ1 +
N∑

i=1

[
�2

(
f0 + f

(−1)
0 − 2

)
ψiφ

−1
i

+ �
(
ψ

(2)
i φi − ψiφ

(−2)
i

)
+ �(� + 1)

(
ψiφ

(−1)
i

)
τ1

]
(20a)

�2(ψi) +
(
f0 + f

(1)
0

)
�(ψi) +

(
�(f0) + f

(1)
1 + f1 + f 2

0

)
ψi = λ2

i ψi, (20b)

�∗2(ψi) + �∗((f0 + f
(1)
0

)
ψi

)
+

(
�(f0) + f

(1)
1 + f1 + f 2

0

)
ψi = λ2

i φi, (20c)

which can be transformed to the first type of the Veselov–Shabat equation [20] with self-
consistent sources (VSESCS).

3.2. The τk-reduction

The τk-reduction is given by [10]

Lk = Bk +
N∑

i=1

ψi�
−1φi.

By dropping τk dependence from (11), we obtain

(
Bk +

N∑
i=1

ψi�
−1φi

)
tn

=
⎡
⎣(

Bk +
N∑

i=1

ψi�
−1φi

) n
k

+

, Bk +
N∑

i=1

ψi�
−1φi

⎤
⎦ , (21a)

5
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ψi,tn =
(

Bk +
N∑

i=1

ψi�
−1φi

) n
k

+

(ψi), (21b)

φi,tn = −
(

Bk +
N∑

i=1

ψi�
−1φi

) n
k
∗

+

(φi), i = 1, 2, . . . , N, (21c)

which is the k-constrained DKP hierarchy. When n = 1, k = 2, (21) leads to

2�
(
f0t1 − f0f0t1

) = (� + 2)f0t1t1 + �2
N∑

i=1

(
ψiφ

(−1)
i

)
, (22a)

ψi,t1 = �(ψi) + f0ψi, φi,t1 = −�∗(φi) − f0φi, i = 1, 2, . . . , N, (22b)

which can be transformed to the second type of VSESCS.

4. Dressing approach for exDKPH

4.1. Dressing approach for the discrete KP hierarchy

We first briefly recall the dressing approach for DKPH [11]. Assume that operator L of DKPH
(4) can be written as a dressing form

L = W�W−1, W = �N + w1�
N−1 + w2�

N−2 + · · · + wN. (23)

It is known [12] that if W satisfies

Wtn = −Ln
−W, (24)

then L satisfies (4). It is easy to check the following lemma.

Lemma 2. If htn = �n(h),W satisfies (24), then ψ = W(h) satisfies (7), i.e.

ψtn = Bn(ψ). (25)

If there are N independent functions h1, . . . , hN solving W(h) = 0, i.e. W(hi) = 0, then
w1, . . . , wN are completely determined from these hi , by solving the linear equation:⎛

⎜⎜⎜⎝
h1 �(h1) · · · �N−1(h1)

h2 �(h2) · · · �N−1(h2)

...
...

...
...

hN �(hN) · · · �N−1(hN)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

wN

wN−1

...

w1

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

�N(h1)

�N(h2)

...

�N(hN)

⎞
⎟⎟⎟⎠ .

Then the operator W can be written as

W = 1

Wrd(h1, . . . , hN)

∣∣∣∣∣∣∣∣∣

h1 h2 · · · hN 1
�(h1) �(h2) · · · �(hN) �

...
...

...
...

...

�N(h1) �N(h2) · · · �N(hN) �N

∣∣∣∣∣∣∣∣∣
, (26)

where

Wrd(h1, . . . , hN) =

∣∣∣∣∣∣∣∣∣

h1 h2 · · · hN

�(h1) �(h2) · · · �(hN)

...
...

...
...

�N−1(h1) �N−1(h2) · · · �N−1(hN)

∣∣∣∣∣∣∣∣∣
.

6
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Proposition 2. Assume that hi satisfies

hi,tn = �n(hi), i = 1, . . . , N (27)

W and L are constructed by (26) and (23), then W and L satisfy (24) and (4), respectively.

Proof. Taking partial derivative ∂tn to the equation W(hi) = 0:

Wtn(hi) + W�n(hi) = (Wtn + Ln
+W + Ln

−W)(hi)

= (Wtn + Ln
−W)(hi) = 0, i = 1, . . . , N,

since Ln
−W = LnW − Ln

+W = W�n − Ln
+W,Ln

−W is a non-negative difference operator of
order < N,Wtn + Ln

−W is also of order < N . Then according to the difference equation’s
theory, Wtn + Ln

−W is a zero operator. �

4.2. Dressing approach for exDKPH

We now generalized the dressing approach to exDKPH (9). We have the following lemma.

Lemma 3. Under (23), if W satisfies (24) and

Wτk
= −Lk

−W +
N∑

i=1

ψi�
−1φiW (28)

then L satisfies (9a) and (9b).

Proof. It is known that L satisfies (9a). We have

Lτk
= Wτk

�W−1 − W�W−1Wτk
W−1

=
(

−Lk
− +

∑
i

ψi�
−1φi

)
L + L

(
Lk

− −
∑

i

ψi�
−1φi

)
=

[
Bk +

N∑
i=1

ψi�
−1φi, L

]
.

�

This dressing operator W is constructed as follows: let gi, ḡi satisfy

gi,tn = �n(gi), gi,τk
= �k(gi) (29a)

ḡi,tn = �n(ḡi), ḡi,τk
= �k(ḡi), i = 1, . . . , N. (29b)

And let hi be the linear combination of gi and ḡi ,

hi = gi + αi(τk)ḡi i = 1, . . . , N, (30)

with the coefficient αi being a differentiable function of τk . Suppose h1, . . . , hN are still
linearly independent.

Define

ψi = −α̇iW(ḡi), φi = (−1)N−i Wrd(�h1, . . . , �̂hi, . . . , �hN)

Wrd(�h1, . . . , �hN)
, i = 1, . . . , N, (31)

where the hat ˆ means rule out this term from the discrete Wronskian determinant, α̇i = dαi

dτk
.

We have the following proposition.

Proposition 3. Let W be defined by (26) and (30), L = W�W−1, ψi and φi be given by (31),
then W,L,ψi, φi satisfy (24), (28) and exDKPH (9).

To prove it, we need several lemmas under the above assumptions. The first one is the
following:

7
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Lemma 4. (The discrete version of Oevel and Strampp’s lemma [18])

W−1 =
N∑

i=1

hi�
−1φi.

Proof. Note that φ1, . . . , φN defined in (31) satisfy the linear equation
N∑

i=1

�j(�hi) · φi = δj,N−1, j = 0, 1, . . . , N − 1, (32)

where δj,N−1 is the Kronecker’s delta symbol. Using properties f �−1 = ∑
j�0 �−j−1

�j(�f ), we have
N∑

i=1

hi�
−1φi =

N∑
i=1

∞∑
j=0

�−j−1�j(�(hi)) · φi =
∞∑

j=0

�−j−1
N∑

i=1

�j(�(hi)) · φi

=
N−1∑
j=0

�−j−1δj,N−1 +
∞∑

j=N

�−j−1
N∑

i=1

�j(�(hi)) · φi = �−N + O(�−N−1).

So we have

W
∑

i

hi�
−1φi = 1 +

(
W

∑
i

hi�
−1φi

)
−

= 1 +
∑

i

W(hi)�
−1φi = 1. (33)

This completes the proof. �

Lemma 5. W ∗(φi) = 0, for i = 1, . . . , N .

Proof. Lemma 1 implies that

(�−1φiW)− = �−1W ∗(φi). (34)

Using lemma 4 and (10a), we have

0 = (�jW−1W)−1 =
(

�j

N∑
i=1

hi�
−1φiW

)
−

=
(

N∑
i=1

�j(hi)�
−1φiW

)
−

=
N∑

i=1

�j(hi)�
−1W ∗(φi), j = 0, . . . , N − 1.

Solving the equations with respect to �−1W ∗(φi), we find �−1W ∗(φi) = 0. This implies
W ∗(φi) = 0. �

Lemma 6. The operator �−1φiW is a non-negative difference operator and

(�−1φiW)(hj ) = δij , 1 � i, j � N. (35)

Proof. Lemma 5 and (34) imply that �−1φiW is a non-negative difference operator. We
define functions cij = (�−1φiW)(hj ), then �(cij ) = φiW(hj ) = 0, which means cij does
not depend on the discrete variable n. From lemma 4, we find that

N∑
i=1

�k(hi)cij = �k

(∑
i

(hi�
−1φiW)(hj )

)
= �k(W−1W)(hj ) = �k(hj ),

so cij = δij . �

8
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Proof of Proposition 3. The proof of (24) is analogous to the proof in the previous section.
For (28), taking ∂τk

to the identity W(hi) = 0, using (29), (30), the definition (31) and
lemma 6, we find

0 = (Wτk
)(hi) + (W�k)(hi) + α̇iW(ḡi) = (Wτk

)(hi) + (LkW)(hi) −
N∑

j=1

ψjδji

= (Wτk
+ Lk

−W −
N∑

j=1

ψj�
−1φjW)(hi).

Since the non-negative difference operator acting on hi in the last expression has degree < N ,
it cannot annihilate N independent functions unless the operator itself vanishes. Hence (28)
is proved. Then lemma 3 leads to (9b). The first equation in (9c) is easy to be verified by a
direct calculation, so it remains to prove the second equation in (9c). First, we see that

(W−1)tn = −W−1WtnW
−1 = W−1(Ln − Bn) = �nW−1 − W−1Bn.

If we substitute W−1 = ∑
hi�

−1φi into this equality at both ends, we have

(W−1)tn =
∑

�n(hi)�
−1φi +

∑
hi�

−1φi,tn

= (�nW−1 − W−1Bn)− =
∑

�n(hi)�
−1φi −

∑
hi�

−1B∗
n(φi).

Then
∑

hi�
−1φi,tn = −∑

hi�
−1B∗

n(φi) implies that (9c) holds.

5. N-soliton solutions for exDKPH

Using proposition 3, we can find solutions to every equations in the exDKPH (9). Let us
illustrate it by solving (13) and (15). For (13), let δi = eλi − 1, κi = eμi − 1, we take the
solution of (29) as follows:

gi := exp
(
lλi + δi t1 + δ2

i τ2
) = eξi , ḡi := exp

(
lμi + κit1 + κ2

i τ2
) = eηi

hi := gi + αi(τ2)ḡi = 2
√

αi exp

(
ξi + ηi

2

)
cosh(�i), �i = 1

2
(ξi − ηi − ln αi).

(36)

Since L = W�W−1 = � + f0 + f1�
−1 + · · · , we have

f0 = Res�(W�W−1�−1), (37)

where W is given by (26) and (36), then f0, ψi and φi given by (31) give rise to the N-soliton
solution for (13).

For example, we obtain a 1-soliton solution for (13) with N = 1 as follows:

f0 = exp

(
λ1 + μ1

2

) (
cosh(�1 + 2θ1)

cosh(�1 + θ1)
− cosh(�1 + θ1)

cosh �1

)
, θ1 = λ1 − μ1

2

ψ1 = −d
√

α1

dτ2
(eμ1−λ1) exp

ξ1 + η1

2
sech �1, φ1 = e−(λ1+μ1)/2 exp

(− ξ1+η1

2

)
2
√

α1
sech(�1 + θ1).

The 2-soliton solution of (13) with N = 2 is given by

f0 = −�(w1) = (eλ1 + eλ2)�
(v1

v

)
,

ψ1 = − α̇1

v

(
1 + α2

(eμ2 − eλ1)(eμ1 − eμ2)

(eλ2 − eλ1)(eμ1 − eλ2)
eχ2

)
(eμ1 − eλ1)(eμ1 − eλ2) eη1 ,

9
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ψ2 = − α̇2

v

(
1 + α1

(eμ1 − eλ2)(eμ1 − eμ2)

(eλ2 − eλ1)(eμ2 − eλ1)
eχ2

)
(eμ2 − eλ2)(eμ2 − eλ1) eη2 ,

φ1 = �

(
1 + α2 eχ2

(eλ1 − eλ2)v
e−ξ1

)
, φ2 = �

(
1 + α1eχ1

( eλ2 − eλ1)v
e−ξ2

)
,

with

v = 1 + α1
eλ2 − eμ1

eλ2 − eλ1
eχ1 + α2

eμ2 − eλ1

eλ2 − eλ1
eχ2 + α1α2

eμ2 − eμ1

eλ2 − eλ1
eχ1+χ2 ,

v1 = 1 + α1
e2λ2 − e2μ1

eλ2 − eλ1
eχ1 + α2

e2μ2 − e2λ1

eλ2 − eλ1
eχ2 + α1α2

e2μ2 − e2μ1

eλ2 − eλ1
eχ1+χ2 .

It can be shown that the interaction between the two solutions is elastic.
For (15), we take the solution of (29) as follows:

gi := exp
(
lλi + δiτ1 + δ2

i t2
) = eξi , ḡi := exp

(
lμi + κiτ1 + κ2

i t2
) = eηi

hi := gi + αi(τ1)ḡi = 2
√

αi exp

(
ξi + ηi

2

)
cosh(�i).

Then

f0 = Res�(W�W−1�−1), f1 = Res�(W�W−1)

together with ψi and φi given by (31) presents the N-soliton solution for (15).
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